
Large ACNET Messages
Rich Neswold, Charlie Briegel, Mike Sliczniak,

Dennis Nicklaus, Charlie King

ACNET has, historically, been a network transport based on datagrams.
Migrating to UDP payloads brought the routing abilities of TCP/IP to ACNET, but
still kept the datagram limitations, including payload size. ACNET tasks trying to
send packets larger than the datagram size limit used their own protocols. Worse
still, our primary data acquisition protocols, RETDAT and GETS32, make no
attempt at supporting large packets so applications using our standard DAQ
libraries can’t receive large packets. We wish to design a method to remove this
restriction with minimal impact to ACNET tasks (ideally, no change would have to
be made to current clients.)

This document describes one possible solution.

Architecture
All ACNET services, if they support large packets, will advertise a task handle of
LNGMSG. Clients do not communicate directly with the LNGMSG handles, only the
LNGMSG tasks communicate with each other.

When an ACNET client sends data with their request, reply, or USM, the ACNET
service determines whether it can be sent via traditional means or if it needs to
be handled by the LNGMSG task. The receiving task will simply see the data (large
or small) and has no idea whether it was received directly through its handle or
pieced together by its local LNGMSG task.

LNGMSG Communications

The LNGMSG tasks communicate with USMs. The tasks should do whatever
validation they can on each packet to make sure the communication state
remains uncorrupted.

Figure 1 shows the payload of a large reply. This message is sent in the payload
of a USM sent from one LNGMSG task to another. All fields in the LNGMSG protocol
headers are in network byte order.

The large data will be broken into smaller packets and sent in ascending offset 1

order. Each payload will be prepended with the ACNET header of the original

 We initially chose 8K, but we’ll measure performance with other sizes to see if there’s a 1

more optimal size.

request with the slight modification that the message length field will get replaced
with the length of the data in the current fragment added to the length of the
ACNET header . The type code field will normally be 0, in which case the packet 2

is the next segment of data. If the type code field is 1, it’s a segment field, but the
sender also wants a resume message from the receiver to determine how to
proceed the transfer. The offset and size fields are 32 bits. The size field will
always contain the size of the full reply (once it has been pieced back together)
and doesn’t include any of the ACNET header data. The offset will start at zero
and, in each subsequent packet, will equal the previous offset added to the size
of the data in the previous packet. The sender will transmit the packets as fast as

 For the initial implementation, this field can be used as another validation check for the 2

packet — or it can be ignored. Future enhancements, however, may allow multiple
ACNET messages to be sent as a large packet and this length field would help
determine where we split the messages apart.

Large ACNET Messages

FIG 1: LONG MESSAGE FORMAT

Long
Message
Header

00: Type code  
(0 or 1)

02: xferId

04: Offset

08: Data size

ACNET
Header of
Embedded

Payload

12: Flags

14: Status

16: STrk

17: SNod

18: CTrk

19: CNod

20: Server Handle

24: Client ID

26: ReqID

28: Segment
Length + 18

One Segment
of Large Data

Payload

30: N
bytes

of
data

30+N:

it can and, after sending a group of segments , will ask the receiver where to 3

proceed.

The receiving LNGMSG task monitors incoming USMs and does the following:

• If the offset is zero, then a new reply is arriving. The receiver can use the size
field to pre-allocate a buffer to hold the rest of the incoming data. After saving
the data in the buffer, it sets the next expected offset to be equal to the size of
data that was just received.

• If the offset is non-zero, it checks to see if the offset and transfer ID matches
a reply that is in progress. If a match is found, the data is appended to the
buffer and the next expected offset is updated.

• After appending the data, if the packet also asked for a response (typecode 1
in the long message header), the task will send a resume message (Figure 2)
with the current expected offset.

• If the offset is non-zero and a reply to a transfer ID is in progress but the
offset is too high (a packet was dropped), the task waits for a packet that also
wants a reply. When it arrives, a resume message is sent to the sender with
the offset of the missing data.

• When the transfer is complete, the last packet will also require a response.
The receiver returns the expected offset (which at this point will be the size of
the data) or a previous offset, if a packet was dropped.

Of course, the transfer needs to correctly free resources after the packet is sent
or if the request gets cancelled during the transfer.

Due to historic design choices, ACNET constrains packet lengths to even-sizes.
We presume that large packets may be used to transfer binary data generated by
third party libraries, so they won’t follow this convention. The size field should

 Initially, we chose 8 packets. Again, performance and reliability measurements may 3

change this number.

Large ACNET Messages

FIG 2: RESUME MESSAGE

00: Type code (2)

02: xferId

04: Offset

08: Data size

12:

show the actual size, odd or not, and the receiver can drop the last byte of the
last packet, if it exceeds the size of the data.

A new type code for Level-II diagnostics will be added. The request will return an
array of three 32-bit integers indicating: 1) the maximum size of datagrams
supported by the node , 2) the maximum large packet accepted by the node , 4 5

and 3) the preferred number of packets sent before a query .6

Alternate Algorithm
Our primary algorithm for large data transfers is a “sliding window”, where the
sender hangs on to the data sent until the receiver confirms its delivery.

These protocol messages, it turns out, can also be used to implement a “bit-map”
algorithm. In this algorithm, the sender sends every segment of the large packet
and only asks for an acknowledgement after the last packet has been sent. The
receiver builds its copy of the large packet with the segments it receives and
keeps track of the holes. When the last packet arrives (with the ACK request), the
receiver can go back and specify the earliest hole. With each filler sent, the
sender always asks for a reply. The receiver replies with each hole’s offset until
they are all filled.

This protocol doesn’t allow either participant to enforce an algorithm for an
exchange. Mis-matched algorithms will still successfully transfer the data — just
at a slightly less efficiency.

 Possibly useful. Though it would be interesting to see, first, how UDP size affects the 4

performance. There may be minor speeds gains for large packets at the cost of
complexity in querying remote nodes for the “optimal” packet size.

 Sending a too-large USM can be dropped silently. A too-large request can result in a 5

“message size error” status. A reply that’s too-large can cause a cancel (with the
requesting client getting a message size error — why is the client asking for a message
it can’t receive, anyways?)

 Mike’s algorithm to adjust the ACK interval based on the network’s behavior is much 6

better than letting the destination node dictate the terms.

Large ACNET Messages

Example Exchanges
A couple of examples may help illustrate how the protocol works. In the following
sections, the notation is

ACNET_TYPE(ACNET header fields){payload}

where ACNET_TYPE is the type of ACNET message (USM, REQ, or REP) and is
immediately followed by a subset of header fields (not all fields are interesting for
these examples.)

In this first example, a 100 Kbyte USM is sent successfully to the server. The
sending node asks for a resume message in the third packet. Note the example
follows the recommendation to use type code 1 in the first packet.

USM(from:LNGMSG@N1, to: LNGMSG@N2) 
{tc:1, xferId:1, offset:0, total:100K, USM(from:CLI@N1, to:SER@N2){25KB of
data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:1, offset: 25K, total:100K}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:0, xferId:1, offset:25K, total:100K, USM(from:CLI@N1, to:SER@N2){25KB of
data}}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:1, xferId:1, offset:50K, total:100K, USM(from:CLI@N1, to:SER@N2){25KB of
data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:1, offset: 75K, total:100K}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:1, xferId:1, offset:75K, total:100K, USM(from:CLI@N1, to:SER@N2){25KB of
data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:1, offset: 100K, total:100K}

This next example is a request containing a 100K payload and where the second
packet was dropped. The “resume” message recovers the data by requesting the
sender restart at the missing offset.

USM(from:LNGMSG@N1, to: LNGMSG@N2) 
{tc:1, xferId:2, offset:0, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:1, offset: 25K, total:100K}

Large ACNET Messages

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:0, xferId:2, offset:25K, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

(receiver doesn’t get the packet)

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:1, xferId:2, offset:50K, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:2, offset: 25K, total:100K}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:0, xferId:2, offset:25K, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:0, xferId:2, offset:50K, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

USM(from:LNGMSG@N1, to:LNGMSG@N2) 
{tc:1, xferId:2, offset:75K, total:100K, REQ(from:CLI@N1, to:SER@N2, msgId:1)
{25KB of data}}

USM(from:LNGMSG@N2, to:LNGMSG@N1) 
{tc:2, xferId:2, offset: 100K, total:100K}

Recommendations

• The first segment should use typecode 1, asking the receiver for a resume
message. By doing this, part of the payload gets sent in addition to checking
whether the receiver supports large messages (a timeout indicates no
support.)

• The last packet of the message must use typecode 1 to make sure the entire
message was received.

• The sender may vary the interval between ACK requests to adapt to network
conditions. For instance, the sender might begin the transfer with an interval
of 4 packets before asking for an ACK. If there isn’t an error, then 8 packets
can be sent before the next ACK. If an error occurred, the sender reduces the
interval of ACKs.

Error Conditions
This section tries to address some of the error conditions that can arise and how
they should be handled.

Large ACNET Messages

A reply packet gets dropped.

The next packet will have an offset higher than expected. The receiver stops
collecting packets and waits for the next request for a resume message. When
asked, the receiver will reply with the next expected offset. The transmission will
continue from that offset. If the first packet was dropped, then the offset will be 0.

The last packet is dropped.

The sender will set a short time-out waiting for the end-response. If it doesn’t
receive it, it resends the last packet.

The sender doesn’t resume at the requested offset.

After sending a resume message, the transfer should eventually restart at the
requested offset. If it doesn’t in a reasonable time (what is reasonable?), it
resends the resume message.

The ACNET requestor doesn’t support large messages.

The first packet should use typecode 1. If the receiver doesn’t reply, it doesn’t
support large packets.

Unresolved Details

How does this work with multicasts?

At first glance, it seems that multicasted requests and USMs should be
prevented from participating in large messages. But thinking more about it,
multicasting large data could be a killer feature of ACNET. Multicast USMs would
probably be better handled by dropping the USM if any packet is dropped. For
multicast requests, any of the receivers could ask for a retransmission. All others
would see offsets less than their expected offset and would have to patiently wait
for the stream to catch back up. Or the sender can send the repeats to the few
nodes that needed it. This needs much more discussion. 

Large ACNET Messages

Glossary
This section tries to defines some terms used when discussing ACNET
communications.

ACNET Client An application that uses the ACNET protocol for network
communications. The client is, usually, linked with a
library that provides the appropriate interface to the local
ACNET service.

ACNET library A library or module used by an application that hides the
(possibly) gory details of interfacing with an ACNET
service.

ACNET Service The process or task on a machine that implements the
actual ACNET protocol (sending and receiving packets,
allocating request IDs, routing traffic to clients.) On the
CLX machines, the ACNET service is acnetd.

Transfer ID A number generated by the LNGMSG task sending a large
packet to tag the transfer. This number should uniquely
identify an active transfer.

Large ACNET Messages

